Designing Effective Transfer Functions for Volume Rendering from Photographic Volumes

نویسندگان

  • David S. Ebert
  • Christopher J. Morris
  • Penny Rheingans
  • Terry S. Yoo
چکیده

ÐPhotographic volumes present a unique, interesting challenge for volume rendering. In photographic volumes, voxel color is predetermined, making color selection through transfer functions unnecessary. However, photographic data does not contain a clear mapping from the multivalued color values to a scalar density or opacity, making projection and compositing much more difficult than with traditional volumes. Moreover, because of the nonlinear nature of color spaces, there is no meaningful norm for the multivalued voxels. Thus, the individual color channels of photographic data must be treated as incomparable data tuples rather than as vector values. Traditional differential geometric tools, such as intensity gradients, density, and Laplacians, are distorted by the nonlinear nonorthonormal color spaces that are the domain of the voxel values. We have developed different techniques for managing these issues while directly rendering volumes from photographic data. We present and justify the normalization of color values by mapping RGB values to the CIE L à u à v à color space. We explore and compare different opacity transfer functions that map three channel color values to opacity. We apply these many-to-one mappings to the original RGB values as well as to the voxels after conversion to L à u à v à space. Direct rendering using transfer functions allows us to explore photographic volumes without having to commit to an a priori segmentation that might mask fine variations of interest. We empirically compare the combined effects of each of the two color spaces with our opacity transfer functions using source data from the Visible Human Project.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct Volume Rendering of Photographic Volumes Using Multi-Dimensional Color-Based Transfer Functions

Traditionally, volume rendering of medical data has been comprised of transfer functions that map a scalar value, usually a MRI or CT intensity, to an opacity. Corresponding color maps are either selected regardless of the actual physical color of the volume (i.e. greyscale) or predetermined as in photographic volumes. Rarely has the voxel color been used as a means to define the associated opa...

متن کامل

Segmentation Assisted Object Distinction for Direct Volume Rendering

Ray Casting is a direct volume rendering technique for visualizing 3D arrays of sampled data. It has vital applications in medical and biological imaging. Nevertheless, it is inherently open to cluttered classification results. It suffers from overlapping transfer function values and lacks a sufficiently powerful voxel parsing mechanism for object distinction. In this work, we are proposing an ...

متن کامل

Closed-Form Approximations to the Volume Rendering Integral with Gaussian Transfer Functions

In direct volume rendering, transfer functions map data points to optical properties such as color and opacity. We have found transfer functions based on the Gaussian primitive to be particularly useful for multivariate volumes, because they are simple and rely on a limited number of free parameters. We show how this class of transfer function primitives can be analytically integrated over a li...

متن کامل

Multidimensional Transfer Functions for Interactive Volume Rendering

Most direct volume renderings produced today employ onedimensional transfer functions, which assign color and opacity to the volume based solely on the single scalar quantity which comprises the dataset. Though they have not received widespread attention, multi-dimensional transfer functions are a very effective way to extract materials and their boundaries for both scalar and multivariate data...

متن کامل

Interactive Transfer Function Specification for Direct Volume Rendering of Disparate Volumes

Transfer functions play a critical role in feature detection through direct volume rendering in volumetric scalar fields. Because of the inherent difficulties of exploratory visualization, assisting the user in transfer function specification is still an important area of research. In particular, the disparate nature of simulated and measured volumetric data necessitates more flexibility in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Vis. Comput. Graph.

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2002